cfd analysis of natural convection heat transfer in a square cavity with partitions utilizing al2o3 nanofluid
نویسندگان
چکیده
in the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. the vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. the nanofluid used in this study is al2o3 with the volume fraction of 20%. it is assumed that nanofluid is a single phase fluid. fluent 6.3.26 is used to simulate the problem. the influence of different parameters such as rayleigh number (ra=105 and 107), height of partition (h=0.1, 0.3, 0.5h) at a fixed distance from the walls (d=0.3h) are studied. according to the results, rayleigh number and height of the partition are important factors that extremely affect the streamlines and isotherms. at ra=107, the flow is confined in the distance between walls and partitions. furthermore, at high partitions, the isotherms are horizontal between two partitions. for a fixed amount of the partition height, nusselt number increases as the rayleigh number rises. on the other hand, for a fixed rayleigh, with the increasing partition height, nusselt number decreases along the hot wall.
منابع مشابه
CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid
In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...
متن کاملCFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid
In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...
متن کاملEffect of nanoparticle shape on natural convection heat transfer in a square cavity with partitions using water-SiO2 nanofluid
In this paper a numerical investigation is performed to study the effects of different nanofluids on convective heat transfer enhancement in a partitioned square cavity subject to different shapes of nanoparticle using water-SiO2 nanofluid. This study has been carried out to analyze the effects of SiO2 nanoparticle, its volumetric fraction between 2 and 4%, and nanoparticle shape (i.e. blades, ...
متن کاملCFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure
The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid ...
متن کاملNumerical Study of Natural Convection in a Square Cavity Filled with a Porous Medium Saturated with Nanofluid
Steady state natural convection of Al2O3-water nanofluid inside a square cavity filled with a porous medium is investigated numerically. The temperatures of the two side walls of the cavity are maintained at TH and TC, where TC has been considered as the reference condition. The top and the bottom horizontal walls have been considered to be insulated i.e., non-conducting and impermeable to mass...
متن کاملeffect of magnetic field on unsteady natural convection heat transfer of cu– water nanofluid in a square porous cavity
magnetic field effect on unsteady natural convection heat transfer of cu–water nanofluid in a square porous cavity was studied numerically in here. at first, initial temprature of the cavity was and vertical walls were at temprature . suddenly the right wall's tamprature was changed to and the horizontal walls were adiabatic. the effective parameters in this study were ra , ha, and . which appe...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of nano dimensionجلد ۲، شماره ۳، صفحات ۱۹۱-۲۰۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023